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Transverse current modes and the wavevector-dependent 
fluidity of simple liquids 

T Gaskell and S F Duffy 
Department of Physics, The University, Sheffield S3 7RH. UK 

Received 10 May 1989 

Abstract. The transverse current correlation function, C T ( k ,  f ) ,  is re-examined and some of 
the limitations of the familiar viscoelastic model, particularly for wavelengths less than a few 
interatomic spacings, emphasised. An alternative theory, which stresses the role of the 
velocity autocorrelation components in CT(k, t ) ,  is proposed, with momentum transfer 
effects to the surrounding atomic shells of a given atom calculated separately. When applied 
to a liquid rubidium model, the results are in good agreement with computer simulation 
data. The theory is also used to investigate the generalised wavevector-dependent fluidity, 
v - ' ( k ) ,  andgivesnew insight into thedetailedstructure which has been revealed by computer 
simulation data. A model for 11 ' ( k )  is proposed, and the relationship of the self-diffusion 
coefficient of the liquid to the fluidity investigated. 

1. Introduction 

The transverse current autocorrelation function, denoted as usual by CT(k, t), is of 
interest in its own right, since it gives information about the wavevector range for which 
the liquid will support propagating shear-wave modes. It also appears in a subsidiary 
role in theories of other time-dependent correlation functions, for example the velocity 
autocorrelation function, when such theories exploit mode-coupling ideas to describe 
the details of correlation effects at intermediate or long times. The familiar viscoelastic 
model provides a useful description of CT(k, t), especially at small wavevectors i.e. 
k G n1I3, where n is the number density. This is not too surprising since this model is an 
extension of the hydrodynamic form of the correlation function to finite k and w .  It does, 
however, have significant defects at larger k where the velocity autocorrelation terms in 
CT(k, t )  start to become more important. 

Through the framework of the generalised Langevin equation and the introduction of 
the associated memory function, we may define a wavevector- and frequency-dependent 
shear viscosity coefficient. Some details of the latter are now available from computer 
simulation studies of rigid sphere, Lennard-Jones and liquid-metal-like systems. The 
purpose of this work is to present a means of calculating CT(k , t ) ,  and hence the 
generalised viscosity, by a method which focuses attention on the single-particle com- 
ponents. but can be extended to include momentum transfer effects to neighbouring 
atomic shells. The theory complements the viscoelastic approach to this problem by 
concentrating on the higher end of the k-range. Nevertheless, it appears to be applicable 
at small enough wavevectors to extend into the viscoelastic regime. This is valuable 
because we are particularly interested in the crossover from single-particle to collective 
behaviour. 
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The theoretical framework is presented in the next section and the importance of the 
single-particle components in the transverse current autocorrelation function demon- 
strated for a liquid-rubidium model. In § 3, theoretical results for CT( k ,  t )  are compared 
with molecular dynamics (MD) data, and then details of the wavevector dependence of 
the generalised viscosity for rubidium are reported and discussed. 

2. Transverse current and generalised fluidity 

The momentum current density fluctuation in a liquid is defined as 

j p ( t )  = mvr(t) exp(ik r , ( t ) )  
i 

where a signifies a Cartesian component. Through this expression we may introduce the 
transverse current autocorrelation function 

CT(k, E O ' f ( o ) j : k ( t ) > / N  (2 .1)  
in which, with k along the z axis, a denotes x or y .  It is now well known that by means 
of the generalised Langevin equation, the Laplace transform of this correlation function, 
CT(k,  z ) ,  may be usefully expressed in the form 

n being the number density (see, for example, Hansen and McDonald 1986). In an 
obvious extension of the hydrodynamic limit of this expression, q ( k ,  z = i o )  is inter- 
preted as a wavevector- and frequency-dependent shear viscosity. We shall be interested 
in the generalised viscosity, q ( k )  = V ( k ,  z = 0), although from the point of view of this 
paper it is more convenient to think in terms of the generalised fluidity, q- ' (k) .  This can 
be obtained from CT( k ,  z = 0) through the equation 

c ~ ( k ,  Z )  = CT(k, t = O ) / [ Z  + ( k 2 / n m ) q ( k ,  z ) ]  (2  * 2)  

q - ' ( k )  = k2CT(k, Z = O ) / n m C ~ ( k ,  t = 0). (2 .3)  
The transverse current will consist of velocity autocorrelation or 'self' terms and 

contributions from the correlation of the velocities of different or 'distinct' atoms which 
arise from momentum transfer. We refer to these as C + ( k ,  t )  and C $ ( k ,  t )  respectively, 
and propose to investigate these contributions to the transverse current separately. The 
fluidity (rather than the viscosity) is conveniently the sum of the separate terms. Apart 
from any intrinsic interest in the generalised transport coefficient, the latter has been 
shown to play an important role in understanding the relationship between the self- 
diffusion coefficient, D ,  and the shear viscosity coefficient, q = q(k  = 0), at a micro- 
scopic level (Balucani et a1 1985). The following limits are known exactly: 
q; ' (k+ 0 )  = k2D/nk,T q - l ( k +  ) = q ; ' ( k +  CO) = k(2mn2kBT/n)-'I2.  

Molecular dynamics data of the fluidity in a liquid rubidium model (Balucani et a1 
1987) are shown in figure 1, for the state point T = 332 K and n = 0.01058 x loz4 ~ m - ~ .  
The computed value of the shear viscosity coefficient in the hydrodynamic limit is 5.5 mP. 
Also included in the figure is a theoretical result based on a simple viscoelastic model 
for f ( k ,  z ) .  This predicts that q ( k ,  z )  = G ( k ) / ( z  + r - ' (k ) ) ,  from which 

?-'(IC) = ( G ( k ) r ( k ) ) - ' .  (2.4) 
The rigidity G (  k )  is given by 

G ( k ) = n k , T +  ( n / k ) ' J ^ d r Y ( l  X -exp(-ik.r))g(u) 

q ( r )  being the pair potential, and g(u)  the radial distribution function. The relaxation 
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Figure 1. The generalised fluidity in liquid rubidium. The crosses refer to MD data, the full 
curve the viscoelastic model prediction (equation (2.4)) and U = 4.405 8, is the usual pair- 
potential parameter. 

time, z ( k ) ,  has the frequently used form suggested by Akcasu and Daniels (1970). This 
reflects an interpolation procedure for C,(k, t )  between the known hydrodynamic and 
ideal gas behaviour in the low- and high-k limits respectively. Clearly, the theory is not 
satisfactory for ko  2 3. In particular, it fails to explain the structure in q-'(k)  which is 
evident in the MD data. Similar, although less obvious, effects can be seen in the 
generalised viscosity data from computer simulation studies of the rigid sphere and 
Lennard-Jones systems (Alley and Alder 1983, Gaskell et a1 1987). 

One expects the self-correlation terms in the transverse current to begin to dominate 
at large enough wavevectors, and figure 1 demonstrates that the viscoelastic model fails 
to give an adequate account of such terms. Consequently, we concentrate on an approach 
to transverse current correlations which gives a more appropriate description of the 
single-particle contributions. It is convenient to write 
G ( k ,  4 = (mv'i(0)muf(t) exp[ik * (rl(0) - rl(t))l) 

= C % ( k ,  t )  + Clf.(k,  t )  (2.5) 
and to evaluate the terms separately by introducing the idea of a velocity field at a 
microscopic level, which we write as 

u(r,  t> = 2 ui(t l f( /r  - 4)l). 
I 

The 'form factor', f ( r ) ,  is constructed so that (i) the velocity field is essentially constant 
across an atomic diameter and (ii) the macroscopic sum rule 

n J dru ( r ,  t )  = 2 u i ( t )  
i 

is satisfied. For all practical purposes, both requirements are met by choosing a step 
function form for f ( r ) ,  whose width, a ,  is obtained through the condition %nu3 =.n-l. 

2.1.  Autocorrelation contribution to CT(k, t) 

The velocity field approach has been used before to investigate the velocity auto- 
correlation function in liquids, and leads to the result (Gaskell and Miller 1978) 
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m2(uf(0)uf(t)) = [ 1 / 3 ( 2 ~ ) ~ 1  jdqf(q)[CL(q-  t )  + 2cT(q, t)lFs(q, cl* (2.6) 

CL(q, t )  is the longitudinal current autocorrelation function, F,(q, t )  the self-inter- 
mediate scattering function and f (q )  the Fourier transform of the form factor. Using 
viscoelasticmodels for CL and CT, and the Gaussian approximation for F,, this expression 
has been shown to account remarkably well for some of the details revealed by computer 
simulation. However, when calculating the self-diffusion coefficient through the Green- 
Kubo formula 

D = Io  ̂dt(uf(O)uf(t)) 

the deficiencies of the viscoelastic approximation for CT, particularly those demonstrated 
in figure 1, are reflected in an overestimate of D near the melting point by approximately 
35% in Rb (Balucani et a1 1987). 

Adopting the same technique to the evaluation of C % ( k ,  t ) ,  we have 

m2(u'i(0kf(t)  exp[ik. (r,(O) - r,(t))l) 

dR(uf(0)uX(rl(O) + R ,  t )6 (R  + r,(O) - r l ( t ) )  e-lk'R) = J  
= 1 dR(uf(O)u"(r,(O) + R ,  t ) ) ( 6 ( R  + rl(0) - r l ( t ) ) )  e-ik'R 

dR(uf(O)u"(r,(O) + R ,  t))G,(R, t )  e-'k'R. (2.7) = J  
The justification for the decoupling of the ensemble average rests on the observation 
that at liquid densities the timescale for momentum transfer is very much shorter than 
that for atomic diffusion. By Fourier transforming the velocity field it is easy to show 
that the momentum transfer component in (2.7) becomes 

(uf(o)ux(rl(o) + R ,  f)) 

= [1 / (2~-~)~1  dqf(q){CL(q, l ) (q  'f)' + cT(q, l)[l - (4 'a)2]>e1q'R 

and hence we obtain 

C W ,  ti = m w ( o ) u i ( t )  exp[ik. (rl(o) - rl(t))i) = [1/(24311 d d ( q )  

{ c L ( q ,  l )  (4 * a)* + c T ( q ,  t )  [I - (4 ' f)2]>FS(iq - k / ,  t). (2.8) 
In the limit k = 0, this equation reduces to (2.6). 

Because they are convenient, we again use viscoelastic models for the currents in 
(2.8) and the results from this expression are compared in figure 2 with both MD data 
and viscoelastic theory for the full transverse current. It appears that (i) at the chosen 
wavevectors (which represent wavelengths of the order of the interparticle spacing) the 
self terms in the transverse current are predominant, and (ii) the present treatment of 
velocity correlations represent a significant improvement on the viscoelastic approxi- 
mation, particularly with regard to the phase of the oscillations. Nevertheless, it has to 
be appreciated that the results are achieved within the limitations imposed by using the 
viscoelastic models for the currents. This will be noticeable when we use the theory to 
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Figure 2. Transverse current correlations in liquid rubidium. The crosses and broken curve 
show MD data and viscoelastic model results respectively for C,(k,  t)/mk,T. The full curve 
is the prediction for C',(k, t)/mkBTfrom equation (2.8). MD data was from Balucani et a1 
(1987). 

evaluate the contribution of the self term to the generalised fluidity, q ; ' ( k ) ,  because 
the deficiencies which produced the overestimate of the diffusion coefficient will also 
intervene here. With this in mind, we mention another point of interest which emerges 
from the calculation. 

It has been pointed out before that the influence of single-particle diffusion on the 
velocity autocorrelation function is small. Putting F,(q, t )  = 1, its initial value, in (2.6) 
has no significant effect on the results (Gaskell 1984). This is because the C, and CL 
decay much more rapidly than F, for the predominant wavevector range, and means that 
the result for C + ( k ,  t) in the last equation may be replaced by 

C%(k,  t) = [ ~ / ( ~ J c ) ~ I  1 dq.f(q){CL(q, t )  (4 * + cT(q, t ) [ l  - (4 a>2]>Fs(k, t )  

= [ 1 / 3 ( 2 ~ ) ~ 1  dqf(q)[CL(q, t ,  + 2cT(q, t)lFs(k, t> 

without any serious consequences. We have indeed verified that this simplified 
expression gives essentially the same results for C + ( k ,  t )  as (2.8), when evaluated with 
viscoelastic models for the currents. However, it also implies that we may usefully write 
the self term as 

C%(k,  t )  = m2(u.i(0)uf(t))(exp[ik ( r l ( 0 )  - rl(t))]) = m2(vf(0)uf(t))Fs(k, t) (2.9) 

If we invoke the Gaussian approximation for F,(k, t )  it has the simple form 

where ([rl(0) - rl(t)I2) is the mean square displacement of a particle in the liquid. This 
Fs(k, t> = exp[-k2([r1(0) - r1(t>l2)/61 (2.10) 
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Figure3. The same as for figure 2, except that the full curve shows C”,(k, t)/mk,Tas obtained 
from equations (2.9) and (2.10), using MD data for the velocity autocorrelation function and 
mean square displacement. 

is useful, because (2.9) and (2.10) allow us to avoid the use of viscoelastic models. In 
figure 3 we show the results for C % ( k ,  t ) ,  obtained from (2.9), using computer data for 
both the velocity autocorrelation function and the mean square displacement (Balucani 
eta1 1984). Fort  G 2 ps the self terms almost reproduce the computed transverse current 
data. There are some residual oscillations in C,(k, t )  for longer times, although beyond 
2 ps the velocity autocorrelation function data is ‘noisy’ and further comparison not very 
meaningful. It may be possible to make a more accurate assessment of q;’( k )  by this 
means, a point we return to in Section 3 .  

2.2. Cross-velocity contribution to C,(k, t) 

Now, however, the cross-velocity terms, designated C $ ( k ,  t ) ,  have to be included. The 
velocity field is again employed so that we write 

Once again we decouple the momentum transfer and configurational relaxation com- 
ponents, and express this equation as 

= I dR (mv~(O)mv”(r,(O) + R ,  t ) )  (2 6 ( R  + r l (0 )  - r,ft))) e-ik.R 
;# 1 
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+ cT(q,  t )  (1 - 4 - a)'))lGd(R, t )  ei(q-k)'R. (2.12) 

Gd(R, t )  = (Cj+16(R + rl (0)  - rj(t))) is the distinct part of the well known van Hove 
correlation function, G(R,  t ) .  Thex direction indicated above refers to a reference frame 
in which k defines the z axis. With CL(q, t = 0) = CT(q, t = 0 )  = mkBT,  it follows that 

Cd,(k, t = 0) = 4nnmkBT d R  R2g(R)f(R)jo(kR) lo= 
where we have used the result G,(R, t = 0 )  = ng(R), andjo denotes a spherical Bessel 
function. The width, a, off(R) is determined by the number density. For dense liquids, 
bearing in mind the exclusion effect in g(R) at small R ,  it is small enough to make the 
product f (R)g(R) zero for all practical purposes. This guarantees that CT(k, t )  has the 
correct initial value. Now, in general we may represent Gd(r, t )  in the form 

Gd(R, t )  = n 4- [1/(2n)3] 1 d p  [ F @ ,  t )  - F,@, t ) ]  e"' 

F ( p ,  t )  being the intermediate scattering function. With reference to (2.12) 

dR Gd(R,  t )  ei(k-q)'R = ( W 3 n 8 ( k  - 4 )  + F(lk - 41,t) - Fs( /k  - 41,t). 

For the reason just mentioned, it is important that the excluded volume effect is properly 
taken into account in the evaluation of C $ ( k ,  t ) ,  and this is not a trivial achievement. 
Although we may choose, for example, a viscoelastic model for F(1k - q / ,  t ) ,  the inevi- 
table termination effects in the wavevector ( 4 )  integral will distort the behaviour of 
Gd(R, t )  at small r. To avoid this problem we have made the following simplification. 
using the Vineyard approximation (Vineyard 1958) for the intermediate scattering 
function, we have 

Within the context of (2.12) the q-dependence of Fs(lk - 41, t )  may be safely neglected, 
for the reason given earlier in the arguments leading to the result in (2.9). Hence, we 
propose 

1 dR Gd(R, t )  ei(k-q)'R E ( 2 ~ ) ~ n 8 ( k  - 4) + Fs(k,  t)n 1 dR h(R) ei(k-'?)'R 

with h(R) = g(R)  -1, and that in the evaluation of the integrals molecular dynamics 
data forg(R) be used. This also ensures that the local structure around atom 1 is correctly 
described, which is important when considering momentum transfer between this atom 
and the neighbouring atomic shells. 

F(lk - 41,o - Fs(/k - 41, t> = [W - 41) - 1lFs(lk - 4l,t>* 

On carrying out the angular integrations we eventually obtain from (2.12) 

C $ ( k ,  t )  = nf(k)CT(k, t )  

+ (2n/34  jo- d q  q2f(q> j= d R  R2h(R>[CL(% 4 (jo(kRljo(qR) 
0 

- j 2 ( k R ) j 2 ( q R ) )  + cT(q, t> (2jO(kR)jO(qR) 
+ j2(kRlj*(qR))IFs(k t )  (2.13) 

where once again, j ,  and j ,  represent spherical Bessel functions. As with the auto- 
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Figure 4. The upper diagram compares a theoretical result for the C,(k,  t)/mk,T. obtained 
from equations (2.8) and (2.13) (full curve) with MD data (crosses). The lower diagram shows 
C ; ( k ,  t)/mk,T, as predicted by equation (2.13), for two different wavevectors. 

correlation contribution, this expression is evaluated by using viscoelastic models for 
the currents. The equation explicitly introduces a Fourier component of the 'form factor' 
of the velocity field. Given the conditions attached tof(r), there is little flexibility inf( k ) .  
To test any differences the above expression has been evaluated with two different 
choices forf(r), namelyf(r) = exp[-(r/a)'*] and the step function O(a - r ) .  There was 
no significant change in the two results. 

3. Results and conclusions 

In figures 4 and 5 details of the theoretical results for CT(k, t )  are presented, together 
with information about the separate components. In contrast to the earlier results, for 
the wavevector chosen in figure 5, C $ ( k ,  t )  plays at least as equally important role as 
C + ( k ,  t) .  Nevertheless, the overall agreement with the computer data is satisfactory, 
although probably because of the use of the Vineyard convolution approximation, the 
theory tends to underestimate CT( k ,  t )  at small t. Whilst the Vineyard approxmation 
is intuitively quite appealing, it does have defects which become apparent when its 
prediction for the intermediate scattering function is analysed. However, it is convenient 
to use here, for the reasons already given. For the smallest wavevector we investigated, 
ka = 0.7656, the results obtained for the transverse current are not significantly different 
from the viscoelastic model prediction. Indeed, at small k and large t ,  the dominant term 
arisesfromC$(k, t ) ,  namelynf(k-+ O)CT(k, t)+ CT(k, t) .  Sointhislimitwereproduce 
the viscoelastic model. The advantage is that we gain some insight into the momentum 
transfer effects. 
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Figure 5.  The upper diagram has the same caption as figure 4. The lower one shows the 
theoretical predictions for the 'self' and 'distinct' contributions to C T ( k ,  t)/mk,T, using 
equations (2.8) and (2.13) respectively. 

Table 1. The generalised fluidity results for liquid Rb.  

0.7656 
1.5312 
2.2968 
3.0624 
3.8280 
4.5936 
5.3592 
6.1248 
6.8904 
7.6560 

1.163 (0.822) 
1.172 (0.838) 
1.186 (0.865) 
1.205 (0.900) 
1.227 (0.942) 
1.253 (0,988) 
1.280 (1.037) 
1.307 (1.085) 
1.333 (1.133) 
1.355 (1.177) 

7.987 
1.402 
0.342 
0.034 

-0.088 
-0.140 
-0.091 

0.000 
0.058 
0.043 

9.150 
2.574 
1.528 
1.239 
1.139 
1.113 
1.189 
1.307 
1.391 
1.398 

0.184 
0.207 
0.277 
0.399 
0.573 
0.806 
1.172 
1.682 
2,266 
2.812 

0.1897 
0.2281 
0.3233 
0.4882 
0.7296 
1.0586 
1.4907 
2.0400 
2.7073 
3.4744 

0.192 2 0.014 
0.232 
0.255 
0.380 
0.525 
0.618 t 0.06 
0.952 
1.515 
1.850 
2.427 

I. These values are obtained from (2.8) and (2.13) with CT(k, t = 0) = 1. The numbers in brackets were 
derived from (2.9) and (2.10), using MD data for the velocity autocorrelation function and mean square 
displacement. 

The results for the generalised transport coefficient are reported in table 1. The 
relative insensitivity of @ ( k ,  z = 0) to the size of the wavevector is quite striking, and 
in contrast to the behaviour of C$( k ,  z = 0). The combination of the two terms produces 
a quite well defined minimum in CT( k ,  z = 0) (for the viscoelastic model this feature is 
somewhat flatter). The effect appears to be more sharply defined when CT(k, z = 0) is 
obtained by integrating computer simulation data of Balucani et a1 (1987) for the 
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Figure 6 .  The upper diagram gives details of the generalised fluidity in liquid rubidium. The 
crosses represent MD data and the squares are theoretical results derived from equations 
(2.8) and (2.13). The lower one shows the fluctuations in q; ' (k) .  The computed values are 
derived by subtracting q;I(k) ,  as obtained from the second column in table 1 [brackets), 
from the MD data for v - ' (k ) .  

transverse current autocorrelation function. It is also clear that ( k )  largely deter- 
mines the value of the fluidity at small k ,  emphasising that in this limit the viscosity is a 
property of the collective behaviour of the liquid. For ka = 3, however, q l l ( k )  plays an 
equal role, and as k increases further rapidly becomes the dominant component. 

The relationship between D and ~ ( k ) ,  which we referred to at the beginning of § 2, 
may be derived from the time integral of the velocity autocorrelation function given in 
(2.5). It is made more transparent by putting F,(k ,  t )  = 1, a well justified procedure in a 
dense liquid (Balucani et a1 1985). There is no contribution from C,(q, t )  = 
-(m2/q2)p(q, t ) ,  so it leads to 

D = (nkBT/3n2) dkf(k)V-'(k). (3.1) loX 
The fluidity tends to be significantly exaggerated by the viscoelastic model, leading to 
an overestimate of the diffusion coefficient. Table 1 shows clearly that our treatment of 
the different components in C,(k,  t )  lead to a much improved prediction of the gen- 
eralised transport coefficient. The remaining discrepancy in magnitude arises from 
q; ' (k ) .  If we circumvent the use of the viscoelastic models in the theory, by using the 
numbers in brackets in table 1, it is largely removed. Theory and MD data are displayed 
in figure 6. The theoretical results do not show structure to the same degree as in the MD 
data. It is particularly evident in the latter for 3 s k a  s 6, where there appears to be a 
quite well defined change in the gradient of q-l(k) (bear in mind that the size of the 
effect is subject to error bars, some of which are indicated in the table). Nevertheless, 
our work does provide some insight into its origin, which is the fluctuations in the distinct 
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term about a rather smoothly varying self-contribution, and reflects the momentum 
exchange effects with the surrounding atomic shells. This is demonstrated in the lower 
diagram in figure 6, which also represents a quite stringent test of the theory. 

Some comments about the application of (3.1) are relevant in the light of the above 
calculations. It has been pointed out before that if we neglect the k-dependence of the 
fluidity completely and replace q- ' (k)  by its hydrodynamic limit, q-', this equation 
predicts (Gaskell1984) 

D = D, = kBT/4nqa (3.2) 
with a playing the role of an effective particle radius in a Stokes-Einstein relation 
between D and q.  We may use the result to estimate the self-diffusion coefficient of 
some simple liquids (e.g. argon), given the viscosity, over most of the liquid region of 
the phase diagram with an accuracy of about 25% or better. This can be useful since 
experimental information of the viscosity is far more readily available. For liquid metals 
however, this simple formula can underestimate D substantially near the melting point, 
according to the available experimental data. This is in sharp contrast with equivalent 
details for liquid argon. If we assume the validity of a Stokes-Einstein relation between 
D and q ,  for the purpose of defining an effective particle radius, R ,  the latter statements 
imply that a/R is significantly closer to unity for argon than for the alkali metals. The 
reason is not understood, though we suggest that a smaller effective radius for the 
diffusion process could be linked to the softer core of the pair potential in the metals. 

Although the fine details of q- ' (k)  are not easily calculated, our work suggests a 
simple but realistic model for the fluidity which should allow a more accurate calculation 
of D. We exploit the details revealed by the calculations. These are (i) that q- ' (k)  is 
initially rather flat and (ii) that as k increases q d ' ( k )  decays rapidly and the fluidity is 
thereafter predominantly determined by q; ' (k) .  On the basis of these observations we 
propose the following model for the fluidity of a dense liquid. It is that 

q - y k )  = q-le(k,  - k j  + q ; y k ) e ( k  - k,j (3.3) 
where 8 denotes a step function. The self-term is zero at k = 0 then increases as k 
increases, and k,  is chosen as the wavevector at which the two components become 
equal, i.e. q-l = q ; l ( k , ) .  Unfortunately, we do not have a convincing model for 
qS-l(k)  either, to fully exploit this suggestion. Nevertheless, we have the advantage of 
knowing that it has a parabolic dependence on k at small k ,  as pointed out in § 2, given 
by k2D/nk,T. As a first approximation, we use it to replace the self-term in (3.3). From 
our experience in the rubidium application this is still a reasonable procedure for a 
limited range of wavevectors beyond k,, but then significantly underestimates q;' ( k )  
(except at large enough wavevectors for the ideal gas value to be relevant). Since it 
contains the unknown D, we further suggest replacing D by DH. That is, (3.3) has 
become 

q - l ( k )  = q-lO(k, - k )  + [k2DH/nkBT]8(k  - k, ) .  (3 * 4 )  
This should, at the very least, give a useful guide to the effect of including the wavevector 
dependence of q(k ) .  In table 2 we show predictions of the self-diffusion coefficient for 
some liquid metals near their melting points, and in table 3 the corresponding details for 
a wide range of thermodynamic states of a liquid argon model. 

We conclude with the following remarks. From our work it is clear that a theory of 
the transverse current autocorrelation function must include a correct treatment of the 
self-component C+(k ,  t) .  The viscoelastic model assumes an exponential memory func- 
tion, and whilst acceptable at small enough k ,  it fails for wavevectors where Q ( k ,  t )  



6214 T Gaskell and S F Duffy 

Table 2. Theoretical predictions of the self-diffusion coefficient of some liquid metals at the 
melting point, using (3.1) and (3.4). 

u(mP) D (cm’ s-’) lo5 DFi (cm2 s-l) lo5 D (cm2 s-l) 
T(K) 10Z4n ( ~ m - ~ )  Expt. Expt. From (3.2) Theory 

Li 453 0.04402 6.0 6.1 4.72 5.33 
Na 371 0.02428 7.0 4.2 2.72 3.07 
K 337 0.01732 5.4 3.7 2.58 3.10 
Rb 312 0.01038 6.7 2.7 1.80 2.03 
In 429 0.03710 19.0 1.6 1.34 1.51 
Sn 505 0.03536 21 0 2.0 1.40 1.58 

Table 3. Theoretical predictions of the self-diffusion coefficients for a liquid argon model, 
using (3.1) and (3.4). The MD data are from Hoheisel e ta /  (1987). 

q(mP)  IO^ D (cm2 s-I) lo5  DH ( c m ’ s ~ ’ )  lo5 D (cm’ SKI) 

7 ( K )  n (cm-3) MD data MD data From (3.2) Theory 

81.8 
85.5 

116.5 
120.3 
139.7 
150 
219.6 
221.3 
225.4 
303.4 
309.1 

0.02 1 6 1 
0.02138 
0.02029 
0.01824 
0.01583 
0.01061 
0.01519 
0.02593 
0.02029 
0.02634 
0.01882 

3.08 1.5 
2.97 1.72 
1.97 3.7 
1.09 4.8 
0.77 8.2 
0.34 16 
0.73 14 
6.09 2.3 
1.75 6.4 
4.78 3.5 
1.33 11.7 

1.31 
1.42 
2.86 
5.147 
8.07 

17.17 
13.2 
1.91 
6.22 
3.35 

10.95 

1.48 
1.60 
3.23 
5.81 
9.11 

19.38 
14.90 
2.15 
7.02 
3.78 

12.36 

becomes significant. With hindsight this is not surprising because the self-component 
depends crucially on the velocity autocorrelation function for which an exponential 
memory function is known to be inadequate. Despite the criticism of the viscoelastic 
approximation, our use of it through the concept of a microscopic velocity field leads to 
a much improved description of C,(k,  t )  over an important wavevector range. We 
use viscoelastic models for the currents because of their relatively simple k and w 
dependence, which considerably reduces the amount of computation. However, our 
approach involves the determination of the transverse current through the Fourier 
components of the velocity field, which themselves contain the current density fluc- 
tuations. This, in principle, offers the possibility of a self-consistent determination of 
the transverse current autocorrelation function and the associated transport coefficient, 
although the computational effort will be quite heavy, and it has not been attempted. 
The existing results, we believe, already give new insight into both these quantities. 
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